On braid groups and right-angled Artin groups
نویسندگان
چکیده
منابع مشابه
Embedding Right-angled Artin Groups into Graph Braid Groups
We construct an embedding of any right-angled Artin group into a graph braid group. We include an observation which decreases the number of strands of the graph braid group required for this embedding, yielding an example of a hyperbolic surface subgroup embedded in a two strand planar graph braid group.
متن کاملEmbeddings of graph braid and surface groups in right-angled Artin groups and braid groups
We prove by explicit construction that graph braid groups and most surface groups can be embedded in a natural way in right-angled Artin groups, and we point out some consequences of these embedding results. We also show that every right-angled Artin group can be embedded in a pure surface braid group. On the other hand, by generalising to rightangled Artin groups a result of Lyndon for free gr...
متن کاملAnti-trees and right-angled Artin subgroups of braid groups
We prove that an arbitrary right-angled Artin group G admits a quasi-isometric group embedding into a right-angled Artin group defined by the opposite graph of a tree. Consequently, G admits quasi-isometric group embeddings into a pure braid group and into the area-preserving diffeomorphism groups of the 2–disk and the 2–sphere, answering questions due to Crisp–Wiest and M. Kapovich. Another co...
متن کاملRight-angled Artin Groups and Their Subgroups
These are notes for a course offered at Yale University in the spring semester of 2013.
متن کاملPushing fillings in right-angled Artin groups
We define a family of quasi-isometry invariants of groups called higher divergence functions, which measure isoperimetric properties “at infinity.” We give sharp upper and lower bounds on the divergence functions for right-angled Artin groups, using different pushing maps on the associated cube complexes. In the process, we define a class of RAAGs we call orthoplex groups, which have the proper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometriae Dedicata
سال: 2014
ISSN: 0046-5755,1572-9168
DOI: 10.1007/s10711-013-9914-6